合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
-
> 二氧化碳气体保护焊表面张力过渡的解决办法
> 不同温度和压力对AOT稳定CO2乳液的界面张力影响(一)
> 糖基阳离子型双子表面活性剂复配酸化压裂用助排剂,可降低表面张力、快速返排
> 钌催化剂合成丁炔二醇醚三硅氧烷表面活性剂反应条件及表面张力测定(二)
> 什么是91视频APP污污下载?91视频APP污污下载用在什么地方
> C72-MPB氟醚磷酸胆碱表面活性剂表面张力、泡沫/润湿性能测定(三)
> “天宫课堂”第三课的具体课程有哪些?
> 真空烘烤设备服务于航天器研制过程中的污染控制
> 医护人员为何冒着中暑风险都不愿脱下厚重的防护服呢?
> NaOL、HZ组合捕收剂对锂辉石矿物浮选效果、表面张力影响(三)
推荐新闻Info
-
> 基于界面张力和表面张力测试评估商用UV油墨对不同承印纸张的表面浸润性差异(三)
> 基于界面张力和表面张力测试评估商用UV油墨对不同承印纸张的表面浸润性差异(二)
> 基于界面张力和表面张力测试评估商用UV油墨对不同承印纸张的表面浸润性差异(一)
> 分子动力学模拟不同浓度仿生黏液-水界面的界面张力
> 温度对水—十二烷基硫酸钠体系与纯水体系界面张力、厚度的影响——结果与讨论、结论
> 温度对水—十二烷基硫酸钠体系与纯水体系界面张力、厚度的影响——模拟方法
> 表面张力:微观力场中的宏观奇迹
> 表面活性剂如何有效降低油水界面张力
> 什么是界面张力,界面张力影响因素
> 水的表面张力现象及其应用
温度对水—十二烷基硫酸钠体系与纯水体系界面张力、厚度的影响——模拟方法
来源:河南化工 浏览 29 次 发布时间:2025-04-14
摘要:采用分子动力学模拟技术,对水及其表面活性剂体系的汽—液界面行为进行了研究。模拟结果表明,随着温度的升高,纯水体系液相主体密度降低,气—液界面厚度增大,界面张力逐渐减小;水—十二烷基硫酸钠体系与纯水体系相比,汽—液界面厚度明显增大,汽—液界面张力明显减小,其随温度的变化规律和纯水体系一致。
众所周知,表面活性剂具有降低水的表面张力能力,其在气—液界面上的吸附行为是发挥效用的关键。气—液界面热力学行为一直是相变传热传质研究的重点。由于气—液界面厚度非常薄,这就使得其理论分析和实验研究变得十分困难。近些年来,随着计算机技术的迅猛发展,越来越多的学者采用分子动力学(MD)模拟方法,来研究气—液相变界面特性。Kuhn等采用分子动力学方法,考查了气—液界面上的脂肪醇聚氧乙烯醚非离子表面活性剂(C12E5)单分子层的结构参数以及分子的动态行为。Wu等采用分子动力学模拟技术,分析了不同种类的胺基Gemini型表面活性剂在正庚烷—水体系的界面张力、密度分布,以及分子的微观结构,其模拟结果与实验吻合良好。苑世领等用分子动力学模拟的方法,研究了阴离子表面活性剂十二烷基硫酸钠(SDS)在汽—液界面上的结构和动力学性质。肖红艳等研究了不同油相和盐度条件下表面活性剂—烷烃—水体系的界面结构,给出了径向分布函数、二面角几率变化等动力学结构信息。本文拟采用分子动力学模拟方法,利用LAMMPS软件模拟水及其表面活性剂体系的气—液界面行为。
1模拟方法
1.1模拟体系
采用直角坐标系,水体系的模拟盒子(初始状态)如图1所示,其大小为Lx×Ly×Lz=12 nm×4 nm×4 nm。液体水分子以面心立方(FCC)晶格方式排列于模拟盒子的中央,汽相分别处于液相的左右两侧,整个模拟体系中有两个气—液界面。
图1水体系的模拟盒子(初始状态)
采用直角坐标系,水—十二烷基硫酸钠表面活性剂体系的模拟盒子(初始状态)如图2所示,其大小为Lx×Ly×Lz=12 nm×4 nm×4 nm。液体水分子以随机分布的方式位于模拟盒子的中央,两侧各有一相对的表面活性剂单分子层,汽相分别处于液相的左右两侧,整个模拟体系中有两个气—液界面。
图2水—十二烷基硫酸钠体系的模拟盒子(初始状态)
1.2势能模型
水分子模型很多,如SPC、SPCE、TPI3P和TPI4P等,其结构示意图和模型参数分别见图3和表1。水分子的势能函数如式(1)所示。
图3不同水分子模型的结构示意图
图3a中为SPC、SPCE和TIP3P模型,b为TIP4P模型(L:负电荷作用点;H:正电荷作用点)
表1水分子模型参数
表中:q,电量,C;σ,尺度参数,nm;ε,能量参数,J;kB,玻尔兹曼常数,J/K;r,分子间距,nm;θ键角,(°)。
在水—表面活性剂体系的MD模拟中,十二烷基硫酸钠采用全原子模型,力场参数基于AMBER力场,其函数形式如方程(2)所示。
式中:kr、kθ、Vn分别为键力常数、弯曲力常数、二面角扭曲常数;l0、θ0分别为标准键长和标准键角;n为整数(绕键旋转360°时出现的能量最小值的数目);φ为二面角;rij为原子i和j之间的距离;静电相互作用项中的q表示原子上的电荷数,e。不同原子间的范德华相互作用项中的εij和σij,采用Lorentz-Berthelot混合规则。
1.3模拟细节
水体系模拟在x、y、z方向均采用周期性边界条件,原子间力的截断半径为12 nm,模拟时间步长为1 fs,总模拟时间为0.6 ns,前0.4 ns使得系统达到平衡,后0.2 ns统计计算并输出系统的密度分布、界面张力以及界面厚度。采取正则系综(NVT),并采用Woodcock控温法维持体系温度衡定;依照设定的温度,随机分布分子的初始平动速度;为了保证水分子不偏离盒子中心,每隔1 000步矫正体系的质心,使之在x、y、z方向始终处于盒子的中心处;水—十二烷基硫酸钠体系模拟原子间力的截断半径为10 nm,库伦力的截断半径为12 nm;模拟时间步长为1 fs,总模拟时间为1.4 ns,前1.0 ns使得系统达到平衡,后0.4 ns统计计算并输出数据,其他的模拟设置同水体系一样。本文模拟数据均采用LAMMPS(Large-scale Atomic/Molecular Massively Parallel Simulator)软件计算得到。