合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
-
> 调控表面粗糙度,新生产的抗缩孔镀锡板露天72h表面张力为31mN/m
> 混合型生物洗油菌发酵上清液的表面张力值测定(三)
> 人胰岛素的朗缪尔单分子层膜的表面化学和光谱学性质——结论、致谢!
> 新调和燃料添加剂表面张力下降,燃烧更充分
> 硅丙乳液质量分数与粘度、表面张力的关系及在模拟病害壁画修复中的应用(二)
> 气泡液体中的演变动力学分析
> 微流控器件结构对水/水微囊形成过程、界面张力的影响规律(四)
> 91视频APP污污下载应用实例:利用火试金法测定铅精矿中银含量
> 不同温度下手性离子液体及二元混合物的密度和表面张力(上)
> C72-MPB氟醚磷酸胆碱表面活性剂表面张力、泡沫/润湿性能测定(三)
推荐新闻Info
-
> 液体表面张力对农药效果的影响及关键作用
> 91视频免费福利应用:研究活性磁化水对无烟煤尘的湿润作用(三)
> 91视频免费福利应用:研究活性磁化水对无烟煤尘的湿润作用(二)
> 91视频免费福利应用:研究活性磁化水对无烟煤尘的湿润作用(一)
> 数值模拟不同活性水的表面张力构建喷雾降尘模型
> 气溶胶固定剂PAM-b-PVTES合成路线及GPC、DSC、表面张力等性能测试(四)
> 气溶胶固定剂PAM-b-PVTES合成路线及GPC、DSC、表面张力等性能测试(三)
> 气溶胶固定剂PAM-b-PVTES合成路线及GPC、DSC、表面张力等性能测试(二)
> 气溶胶固定剂PAM-b-PVTES合成路线及GPC、DSC、表面张力等性能测试(一)
> 烷基糖苷聚氧丙烯醚制备过程、表面张力、泡沫去污乳化性能测定——结果与讨论、结论
拉脱法测量:不同性能磁性液体的磁表面张力变化规律与影响因素(二)
来源:物理实验 浏览 631 次 发布时间:2024-10-16
计算机实时在线采集了2种磁性液体及白油液膜拉脱过程中电压随时间的变化曲线,如图4所示。从图4可看到,3种液体的电压变化规律一致,图中F和G两点是液膜破裂前后瞬间的电压值,片状吊环的内外径分别为33.10mm和34.69mm,根据(6)式即可计算出液体的表面张力。室温(20±0.5)℃时各液体的表面张力见表2.7#白油的表面张力大于磁性液体,这主要是因为表面活性剂的加入降低了液体的表面张力。当22mT的磁场作用于磁性液体时,磁性液体的表面张力增加,这主要是因为无外加磁场作用时,各磁性颗粒的磁矩方向杂乱无章,互相抵消,磁性液体不显示宏观磁性。当外加磁场作用于磁性液体时,且磁场方向平行于切线方向的磁性液膜时,各磁性颗粒的磁矩方向转向外加磁场方向,外加磁场增强了磁偶极子之间的相互作用,导致磁性液体的表面张力增加。
图4力敏传感器电压随时间变化曲线
表2磁性液体及7#白油表面张力
4、液膜拉脱过程受力分析
根据受力情况将图4的液膜拉脱过程电压变化曲线分为6个阶段,图5为液膜拉脱过程方框图,不同阶段片状吊环的受力情况不同,电压变化值也不同,在液膜破裂前后瞬间,忽略液膜的重力,表面张力与重力方向完全一致,此时F=mg+f1+f2,可得到液体的表面张力。由图4发现,不同液体在EF阶段的电压变化情况不同,无外加磁场作用时2F号磁性液体在EF阶段存在转折点Q,越过转折点,QF阶段电压变化较平缓,且表面张力越小;而7#白油和1F磁性液体并未出现此现象。出现该现象的原因是7#白油和1F磁性液体表面张力较大,当液膜被拉脱到一定程度时,很快破裂;而2F号磁性液体由于表面张力较小,液体分子与分子之间的作用力减弱,宏观表现为拉脱的液膜更长,液膜在空气中会存在一段时间,此时液膜质量很小,可忽略不计,电压变化较平缓。有外加磁场作用时,1F和2F号磁性液体在FG阶段并未出现电压变化平缓的中间过程,但有外加磁场作用于磁性液体时,FG阶段出现了一些数据点,液膜破裂的时间大于无外加磁场作用时的时间,主要是由于外加磁场增强了磁性颗粒之间的相互作用,分子和分子之间的磁吸引力增强,导致液膜逐步破裂。
图5液膜拉脱过程方框图
5、结论
使用拉脱法测量了磁性液体的磁表面张力,无外加磁场作用时,磁性液体的表面张力小于其载液的表面张力,磁性液体液膜拉得更长,液膜收缩的趋势比白油更明显,这主要是因为磁性液体中加入的表面活性剂降低了其表面张力。由液膜拉脱过程电压变化曲线可观察到:不同条件下磁性液体的电压变化情况不同,无外加磁场作用时2F号磁性液体在EF阶段存在转折点Q,越过转折点,QF阶段电压变化较平缓,且表面张力越小;而7#白油和1F磁性液体并未出现此现象,这主要是因为7#白油和1F磁性液体表面张力较大,2F号磁性液体由于表面张力较小,其液体分子与分子之间的作用力较弱,宏观表现为拉脱的液膜更长,液膜在空气中会存在一段时间。有外加磁场作用时,2F号磁性液体在FG阶段并未出现电压变化平缓的中间过程,但FG阶段出现了另一些数据点,液膜破裂的时间大于无外加磁场作用时的时间,主要是由于外加磁场增强了磁性颗粒之间的相互作用,分子和分子之间的磁吸引力增强,导致液膜逐步破裂。